Layer thickness - Try to place concrete in even horizontal layers. Do not attempt to puddle or vibrate it into the form. Place each layer in one operation and consolidate it before placing the next layer to prevent honeycomb- ing and voids. This is particularly critical in wall forms containing considerable reinforcement. Use a mechanical vibrator or a hand spading tool for consolidation. Take care not to over vibrate. This can cause segregation and a weak surface. Do not allow the first layer to take its initial set before adding the next layer. Layer thickness depends on the type of construction, the width of the space between forms, and the amount of reinforcement.
Compacting - (Note: This is different from soil compaction.) First, place concrete into its final position as nearly as possible. Then, work the concrete thoroughly around reinforcement and imbedded fixtures, into the corners, and against the sides of the forms. Because paste tends to flow ahead of aggregate, avoid horizontal movements that result in segregation.
Placing rate - To avoid excessive pressure on large project forms, the filling rate should not exceed 4 vertical feet per hour, except for columns. Coordinate the placing and com- pacting so that the concrete is not deposited faster than it can be compacted properly. To avoid cracking during settlement, allow an interval of at least 4 hours, preferably 24 hours, between placing slabs, beams, or girders, and placing the columns and walls they support.
Wall construction - When constructing walls, beams, or girders, place the first batches of each layer at the ends of the section, then proceed toward the center to prevent water from collecting at the form ends and corners. For walls, stop off the inside form at the construction level. Overfill the form for about 2 inches and remove the excess just before the concrete sets to ensure a rough, clean surface. Before placing the next lift of concrete, deposit a 1/2- to 1-inch-thick layer of sand-cement mortar. Make the mortar with the same water content ratio as the concrete and with a 6-inch slump to prevent stone pockets and help produce a watertight joint. View 1 of figure 7-41 shows the proper way to place concrete in the lower portion of high wall forms. Note the different types of drop chute that can be used to place concrete through port openings and into the lower portion of the wall. Space the port openings at about 10-foot intervals up the wall. The method used to place concrete in the upper portion of the wall is shown in view 2 of figure 7-41. When placing concrete for walls, be sure to remove the spreaders as you fill the forms.
Slab construction - When constructing slabs, place the concrete at the far end of the slab first, and then place subsequent batches against previously placed concrete, as shown in view 3 of figure 7-41. Do not place the concrete in separate piles and then level the piles and work them together. Also, don't deposit the concrete in piles and then move them horizontally to their final position. These practices can result in segregation.
Placing concrete on slopes - View 4 of figure 7-41 shows how to place concrete on slopes. Always deposit the concrete at the bottom of the slope first, then proceed up the slope placing each new batch against the previous one. When consolidated, the weight of the new concrete increases the compacting of the previously placed concrete.
LEARNING OBJECTIVE: Upon completing this section, you should be able to describe the methods available for consolidating concrete.
Except for concrete placed underwater, you must compact or consolidate all concrete after placement.
Consolidation eliminates rock pockets and air bubbles and brings enough fine material both to the surface and against the forms to produce the desired finish. You can use such hand tools as spades, puddling sticks, or tampers, but mechanical vibrators are best. Any compacting device must reach the bottom of the form and be small enough to pass between reinforcing bars. The process involves carefully working around all reinforcing steel with the compacting device to assure proper embedding of reinforcing steel in the concrete. Since the strength of
Continue Reading