Figure 3-16.-Fillet welds.
Figure 3-17.-Surfacing welds.
After the effects of heat on metal are discussed, later in the chapter, you will understand the significance of the buildup sequence and the importance of controlling the interpass temperature.
Across-sectional view of a fillet weld (fig. 3-16) is triangular in shape. This weld is used to join two surfaces that are at approximately right angles to each other in a lap, tee, or comer joint.
Surfacing is a welding process used to apply a hard, wear-resistant layer of metal to surfaces or edges of worn-out parts. It is one of the most economical methods of conserving and extending the life of machines, tools, and construction equipment. As you can see in figure 3-17, a surfacing weld is composed of one or more stringer or weave beads. Surfacing, sometimes known as hardfacing or wearfacing, is often used to build up worn shafts, gears, or cutting edges. You will learn more about this type of welding in chapter 6 of this training manual.
A tack weld is a weld made to hold parts of an assembly in proper alignment temporarily until the final welds are made. Although the sizes of tack welds are not specified, they are normally between 1/2 inch to 3/4 inch in length, but never more than 1 inch in length. In determining the size and number of tack welds for a specific job, you should consider thicknesses of the metals being joined and the complexity of the object being assembled.
Plug and slot welds (fig. 3-18) are welds made through holes or slots in one member of a lap joint. These welds are used to join that member to the surface of another member that has been exposed through the
Figure 3-18.-Plug and slot welds.
hole. The hole may or may not be completely filled with weld metal. These types of welds are often used to join face-hardened plates from the backer soft side, to install liner metals inside tanks, or to fill up holes in a plate.
Resistance welding
is a metal fabricating process in which the fusing temperature is generated at the joint by the resistance to the flow of an electrical current. This is accomplished by clamping two or more sheets of metal between copper electrodes and then passing an electrical current through them. When the metals are heated to a melting temperature, forging pressure is applied through either a manual or automatic means to weld the pieces together. Spot and seam welding (fig. 3-19) are two common types of resistance welding processes.
Spot welding is probably the most commonly used type of resistance welding. The material to be joined is placed between two electrodes and pressure is applied. Next, a charge of electricity is sent from one electrode through the material to the other electrode. Spot welding is especially useful in fabricating sheet metal parts.
Seam welding is like spot welding except that the spots overlap each other, making a continuous weld
Continue Reading