This is an alloy of copper and zinc. Additional elements, such as aluminum, lead, tin, iron, manganese, or phosphorus, are added to give the alloy specific properties. Naval rolled brass (Tobin bronze) contains about 60% copper, 39% zinc, and 0.75% tin. This brass is highly corrosion-resistant and is practically impurity free.
Brass sheets and strips are available in several grades: soft, 1/4 hard, 1/2 hard, full hard, and spring grades. Hardness is created by the process of cold rolling. All grades of brass can be softened by annealing at a temperature of 550°F to 600°F then allowing it to cool by itself without quenching. Overheating can destroy the zinc in the alloy.
Bronze is a combination of 84% copper and 16% tin and was the best metal available before steel-making techniques were developed. Many complex bronze alloys, containing such elements as zinc, lead, iron, aluminum, silicon, and phosphorus, are now available. Today, the name bronze is applied to any copper-based alloy that looks like bronze. In many cases, there is no real distinction between the composition of bronze and that of brass.
Nickel is used in these alloys to make them strong, tough, and resistant to wear and corrosion. Because of their high resistance to corrosion, copper nickel alloys,
containing 70% copper and 30% nickel or 90% copper and 10% nickel, are used for saltwater piping systems. Small storage tanks and hot-water reservoirs are construtted of a copper-nickel alloy that is available in sheet form. Copper-nickel alloys should be joined by metal- arc welding or by brazing.
A heavy metal that weighs about 710 pounds per cubic foot. In spite of its weight, lead is soft and malleable and is available in pig and sheet form. In sheet form, it is rolled upon a rod so the user can unroll it and cut off the desired amount. The surface of lead is grayish in color; however, after scratching or scraping it, you can see that the actual color of the metal is white. Because it is soft, lead is used as backing material when punching holes with a hollow punch or when forming shapes by hammering copper sheets. Sheet lead is also used to line sinks or protect bench tops where a large amount of acid is used. Lead-lined pipes are used in systems that carry corrosive chemicals. Frequently, lead is used in alloyed form to increase its low-tensile strength. Alloyed with tin, lead produces a soft solder. When added to metal alloys, lead improves theirmachinability.
CAUTION
When working with lead, you must take proper precautions because the dust, fumes, or vapors from it are highly poisonous.
You often see zinc used on iron or steel in the form of a protective coating called galvanizing. Zinc is also used in soldering fluxes, die castings, and as an alloy in making brass and bronze.
Tin has many important uses as an alloy. It can be alloyed with lead to produce softer solders and with copper to produce bronze. Tin-based alloys have a high resistance to corrosion, low-fatigue strength, and a compressive strength that accommodates light or medium loads. Tin, like lead, has a good resistance to corrosion and has the added advantage of not being poisonous; however, when subjected to extremely low temperatures, it has a tendency to decompose.
This metal is easy to work with and has a good appearance. Aluminum is light in weight and has a high strength per unit weight. A disadvantage is that the tensile strength is only one third of that of iron and one fifth of that of annealed mild steel.
Aluminum alloys usually contain at least 90% aluminum. The addition of silicon, magnesium, copper, nickel, or manganese can raise the strength of the alloy to that of mild steel. Aluminum, in its pure state, is soft and has a strong affinity for gases. The use of alloying elements is used to overcome these disadvantages; however, the alloys, unlike the pure aluminum, corrodes unless given a protective coating. Threaded parts made of aluminum alloy should be coated with an antiseize compound to prevent sticking caused by corrosion.
Continue Reading