superheat, latent heat of vaporization, and some of its sensible heat.
Every mechanical refrigeration system operates at two different pressure levels. The dividing line is shown in figure 6-14. The line passes through the discharge valves of the compressor on one end and through the orifice of the metering device or expansion valve on the other.
The high-pressure side of the refrigeration system comprises all the components that operate at or above condensing pressure. These components are the discharge side of the compressor, the condenser, the receiver, and all interconnected tubing up to the metering device or expansion valve.
The low-pressure side of a refrigeration system consists of all the components that operate at or below evaporating pressure. These components comprise the low-pressure side of the expansion valve, the evaporator, and all the interconnecting tubing up to and including the low side of the compressor.
Refrigeration mechanics call the pressure on the high side discharge pressure, head pressure, or high-side pressure. On the low side, the pressure is called suction pressure or low-side pressure.
The refrigeration cycle of a mechanical refrigeration system may be explained by using figure 6-14. The pumping action of the compressor (1) draws vapor drawn from the evaporator (2). This action reduces the pressure in the evaporator, causing the liquid particles to evaporate. As the liquid particles evaporate, the evaporator is cooled. Both the liquid and vapor refrigerant tend to extract heat from the warmer objects in the insulated refrigerator cabinet. The ability of the liquid to absorb heat as it vaporizes is very high in comparison to that of the vapor. As the liquid refrigerant is vaporized, the low-pressure vapor is drawn into the suction line by the suction action of the compressor (1). The evaporation of the liquid refrigerant would soon remove the entire refrigerant from the evaporator if it were not replaced. The replacement of the liquid refrigerant is usually controlled by a metering device or expansion valve (3). This device acts as a restrictor to the flow of the liquid refrigerant in the liquid line. Its function is to change the high-pressure, subcooled liquid refrigerant to low-pressure, low-temperature liquid particles, which will continue the cycle by absorbing heat.
The refrigerant low-pressure vapor drawn from the evaporator by the compressor through the suction line, in turn, is compressed by the compressor to a high-pressure vapor, which is forced into the
Figure 6-14. - Refrigeration cycle.
Continue Reading