force are in a circular direction, as shown in figure 7-58. When the current flow is through a coil around the test piece, as shown in figure 7-59, the magnetic lines of force are longitudinal through the test piece.
When a defect is to show up as a disturbance in the pattern of the iron particles, the direction of the magnetic field must be at right angles to the major axis of the defect. A magnetic field having the necessary direction is established when the current flow is parallel to the major axis of the defect. Since the orientation of the defect is unknown, different current directions must be used during the test. As shown in figure 7-58, circular magnetism is induced in the test piece so you can inspect the piece for lengthwise cracks, while longitudinal magnetism, as shown in figure 7-59, is induced so you can inspect the piece for transverse cracks. In general, magnetic particle inspection is satisfactory for detecting surface cracks and subsurface cracks that are not more than 1/4 inch below the surface.
The type of magnetic particle inspection unit commonly used in the Navy is a portable low-voltage unit having a maximum magnetizing output of 1,000 amperes, either alternating or direct current. It is ready to operate when plugged into the voltage supply specified by the manufacturer. The unit consists of a magnetizing current source, controls, metering, three 10-foot lengths of flexible cable, and a prod kit. The prod kit includes an insulated prod grip fitted with an ON-OFF relay or current control switch, a pair of heavy copper contact prods, and two 5-foot lengths of flexible cable. Cable fittings are designed so that either end of the cable can be connected to the unit, to the prods, or to any other cable. The three outlets on the front of the unit make changing from alternating to direct current or vice versa very easy. The outlets are labeled as follows: left is ac, the center is COMMON, and the right is dc. One cable will always be plugged into the COMMON outlet, while the other cable is plugged into either the ac or dc outlet, depending upon what type of current the test requires. For most work, alternating current magnetization effectively locates fatigue cracks and similar defects extending through to the surface. When you require a more sensitive inspection to detect defects below the surface, use direct current.
You can use the unit with alternating or direct current in either of two ways: (1) with prods attached to the flexible cable and used as contacts for the current to pass into and out of a portion of the test piece, setting up circular magnetization in the area between the prods contact points, as shown in figure 7-58; or (2) with the flexible cable wrapped around the work to form a coil that induces longitudinal magnetism in the part of the workpiece that is surrounded by the coiled cable (fig. 7-59).
Although you can use either of these two methods, the prod method is probably the easier to apply. Inmost instances, it effectively serves to detect surface defects. With the prods, however, only a small area of the test piece can be magnetized at any one time. This magnetized area is limited to the distance between prod contact points and a few inches on each side of the current path. To check the entire surface, you must test each adjacent area by changing the location of the prod contact points. Each area of the test piece must be inspected twice-once with the current passing through the metal in one direction and then with the current passing through the metal in a direction at right angles to the direction of the first test. One of the advantages of the prod method is that the current can be easily passed through the metal in any desired direction. Thus, when a given area is suspect, magnetic fields of different directions can be induced during the test.
The prod method is accomplished by adjusting the unit for a current output suitable for the magnetizing and testing of any particular kind of metal. The current setting required depends on the distance between prod contact points. With the prod kit that is supplied with the unit, the space between prod contact points is 4 to 6 inches. A current setting between 300 and 400 amperes is satisfactory when the material thickness is less than 3/4 inch. When the material thickness is over 3/4 inch, use 400 to 600 amperes. When the prod contact points are closer together, the same magnetic field force can be obtained with less current. With prods constantly at the same spacing, more current will induce a greater field strength.
After adjusting the unit, place the prods in position. Hold them infirm contact with the metal and turn on the current. Then apply magnetic particles to the test area with the duster bulb and look for any indicator patterns. With the current still on, remove the excess particles from the test area with a blower bulb and complete the inspection. Do not move the prods until after the current has been turned off. To do so could cause the current to arc, resulting in a flash similar to that occurring in arc welding. When you use magnetic particle inspection, hairline cracks that are otherwise invisible are readily indicated by an unmistakable outline of the defect. Large voids beneath the surface are easier to detect than small voids, but any defect below the surface is more difficult to detect than one that extends through to the surface. Since
Continue Reading