contents) is lowered, the liquid refrigerant gradually changes to a vapor. The refrigerant vapor then passes into the suction line by the action of the compressor.
Most evaporators are made of steel, copper, brass, stainless steel, aluminum, or almost any other kind of rolled metal that resists the corrosion of refrigerants and the chemical action of the foods.
Evaporators are mainly of two types - dry or flooded. The inside of a dry evaporator refrigerant is fed to the coils only as fast as necessary to maintain the temperature wanted. The coil is always filled with a mixture of liquid and vapor refrigerant. At the inlet side of the coil, there is mostly liquid; the refrigerant flows through the coil (as required); it is vaporized until, at the end, there is nothing but vapor. In a flooded evaporator, the evaporator is always filled with liquid refrigerant. A float maintains liquid refrigerant at a constant level. As fast as the liquid refrigerant evaporates, the float admits more liquid, and, as a result, the entire inside of the evaporator is flooded with liquid refrigerant up to a certain level determined by the float.
The two basic types of evaporators are further classified by their method of evaporation, either direct expanding or in direct expanding. In the direct-expanding evaporator, heat is transferred directly from the refrigerating space through the tubes and absorbed by the refrigerant. In the indirect-expanding evaporator, the refrigerant in the evaporator is used to cool some secondary medium, other than air. This secondary medium or refrigerant maintains the desired temperature of the space. Usually brine, a solution of calcium chloride is used as the secondary refrigerant.
Natural convection or forced-air circulation is used to circulate air within a refrigerated space. Air around the evaporator must be moved to the stored food so that heat can be extracted, and the warmer air from the food returned to the evaporator. Natural convection can be used by installing the evaporator in the uppermost portion of the space to be refrigerated, so heavier cooled air will fall to the lower food storage and the lighter food-warmed air will rise to the evaporator. Forced-air circulation speeds up this to ensure all areas are cooled. process and is usually used in large refrigerated spaces
To maintain correct operating conditions, control devices are needed in a refrigeration system. Some of the control devices are discussed in this chapter.
METERING DEVICES. - Metering devices, such as expansion valves and float valves, control the flow of liquid refrigerant between the high side and the low side of the system. It is at the end of the line between the condenser and the evaporator. These devices are of five different types: an automatic expansion valve (also known as a constant-pressure expansion valve), a thermostatic expansion valve, low-side and high-side float valves, and a capillary tube.
Automatic Expansion Valve. - An automatic expansion valve (fig. 6-22) maintains a constant pressure in the evaporator. Normally this valve is used only with direct expansion, dry type of evaporators. In operation, the valve feeds enough liquid refrigerant to the evaporator to maintain a constant pressure in the coils. This type of valve is generally used in a system where constant loads are expected. When a large variable load occurs, the valve will not feed enough refrigerant to the evaporator under high load and will overfeed the evaporator at low load. Compressor damage can result when slugs of liquid enter the compressor.
Thermostatic Expansion Valve. - Before discussing the thermostatic expansion valve, let's explain the term SUPERHEAT. A vapor gas is superheated when its temperature is higher than the boiling point corresponding to its pressure. When the boiling point begins, both the liquid and the vapor are at the same temperature. But in an evaporator, as the gas vapor moves along the coils toward the suction line, the gas may absorb additional heat and its temperature rises. The difference in degrees between the saturation temperature and the increased temperature of the gas is called superheat.
A thermostatic expansion valve (fig. 6-22) keeps a constant superheat in the refrigerant vapor leaving the coil. The valve controls the liquid refrigerant, so the evaporator coils maintain the correct amount of refrigerant at all times. The valve has a power element that is activated by a remote bulb located at the end of the evaporator coils. The bulb senses the superheat at the suction line and adjusts the flow of refrigerant into the evaporator. As the superheat increases (suction line), the temperature, and therefore the pressure, in the remote bulb also increases. This increased pressure, applied to the top of the diaphragm, forces it down along with the pin, which, in turn, opens the valve, admitting replacement refrigerant from the receiver to flow into the evaporator. This replacement has three effects. First, it provides additional liquid
Continue Reading