between pressure and temperature. A pressure motor control is shown in figure 6-26. The device consists of a low-pressure bellows, or, in some cases, a low- pressure diaphragm, connected by a small diameter tube to the compressor crankcase or to the suction line. The pressure in the suction line or compressor crankcase is transmitted through the tube and actuates the bellows or diaphragm. The bellows move according to the pressure, and its movement causes an electric switch to start (cut in) or stop (cut out) the compressor motor. Adjustments can be made to the start and stop pressures under the manufacturer's instruction. Usually the cutout pressure is adjusted to correspond to a temperature a few degrees below the desired evaporator coil temperature, and the cut-in pressure is adjusted to correspond to the temperature of the coil.
The tem perature-actuated motor control is similar to the pressure device. The main difference is that a temperature-sensing bulb and a capillary tube replace the pressure tube. The temperature motor control cuts in or cuts out the compressor according to the temperature in the cooled space.
The refrigeration system may also be equipped with a high-pressure safety cutout switch that shuts off the power to the compressor motor when the high-side pressure exceeds a preset limit.
SOLENOID STOP VALVES. - Solenoid stop valves, or magnetic stop valves, control gas or liquid flow. They are most commonly used to control liquid refrigerant to the expansion valve but are used throughout the system. The compressor motor and solenoid stop valve are electrically in parallel; that is, the electrical power is applied or removed from both at the same time. The liquid line is open for passage of refrigerant only when the compressor is in operation and the solenoid is energized. A typical solenoid stop valve is shown in figure 6-27.
Improper operation of these valves can be caused by a burned-out solenoid coil or foreign material lodged between the stem and the seat of the valve, allowing fluid to leak. Carefully check the valve before replacing or discarding. The valve must be installed so that the coil and plunger are in a true vertical position. When the valve is cocked, the plunger wi II not reseat properly, causing refrigerant leakage.
THERMOSTAT SWITCH. - Occasionally, a thermostat in the refrigerated space operates a solenoid stop valve, and the compressor motor is controlled independently by a low-pressure switch. The solenoid control switch, or thermostat, makes and breaks the electrical circuit, thereby controlling the liquid refrigerant to the expansion valve. The control bulb is charged with a refrigerant so that temperature changes of the bulb itself produce like changes in pressure within the control bulb. These pressure changes are transmitted through the tubing to the switch power element to operate the switch. The switch opens the contacts and thus releases the solenoid valve, stopping the flow of refrigerant to the cooling coil when the temperature of the refrigerated space has reached the desired point. The compressor continues to operate until it has evacuated the evaporator. The resulting low
Figure 6-26. - Pressure-actuated motor control.
Figure 6-27. - A solenoid stop valve.
Continue Reading