The traps or separators prevent the oil from draining back to the compressor head on shutdown. Should a single compressor or multiple compressors with capacity modulation be used in an instance of this kind, another solution may be dictated. When a compressor unloads, less refrigerant gas is pumped through the system. The velocity of flow in the refrigerant lines drops off as the flow decreases. It is necessary to maintain gas velocities above some minimum value to keep the entrained oil moving with the refrigerant. The problem becomes particularly acute in refrigerant gas lines when the flow is upward. It does not matter whether the line is on the suction or discharge side of the compressor; the velocity must not be allowed to drop too low under low refrigerant flow conditions. Knowing the minimum velocity, 1,000 feet per minute (fpm), for oil entrainment up a vertical riser and the minimum compressor capacity, the designer of the piping can overcome this problem using a double riser.
The smaller line in the double riser is designed for minimum velocity, at the minimum step, of compressor capacity. The larger line is sized to assure that the velocity in the two lines at full load is approximately the same as in the horizontal flow lines. A trap of minimum dimensions is formed at the bottom of the double-riser assembly, which collects oil at minimum load. Trapped oil then seals off the larger line so the entire flow is through the smaller line.
If an oil separator is used at the bottom of a discharge gas riser, the need for a double riser is eliminated. The oil separator will do as its name implies - separate the major part of the oil from the gas flowing to it and return the oil to the compressor crankcase. Since no oil separator is 100 percent effective, the use of an oil separator in the discharge line does not eliminate the need for double risers in the suction lines of the same system if there are vertical risers in the suction lines. When multiple compressors with individual condensers are used, the liquid lines from the condenser should join the common liquid line at a level well below the bottoms of the condensers. The low liquid line prevents gas from an "empty" condenser from entering the line because of the seal formed by the liquid from other condensers.
NOTE: A common water-regulating valve should control the condenser water supply for a multiple system using individual condensers, so each condenser receives a proportional amount of the condenser water.
Frequently, when multiple compressors are installed, only one condenser is provided. Such installations are satisfactory only as long as all of the compressors are operating at the same suction pressure. However, several compressors may occasionally be installed which operate at different suction pressures - the pressures corresponding, of course, to the various temperatures needed for the different cooling loads. When this is the case, a separate condenser must be installed for each compressor or group of compressors operating at the same suction pressure. Each compressor, or group of compressors, operating at one suction pressure must have a complete piping system with an evaporator and condenser, separate from the remaining compressors operating at other suction pressures. Separate systems are required because the crankcase of compressors operating at different suction pressures cannot be interconnected. There is no way of equalizing the oil return to such compressors.
The suction connection to a multiple compressor system should be made through a suction manifold, as shown in figure 6-47. The suction manifold should be as short as possible and should be taken off in such a manner that any oil accumulating in the header returns equally to each machine.
Evaporative condensers can be constructed with two or more condensers built into one spray housing. This is accomplished quite simply by providing a separate condensing coil for each compressor, or a group of compressors, operating at the same suction pressure. All of the condensing coils are built into one spray housing; this provides two or more separate condensers in one condenser housing.
Q28. What type of acid is formed when R-12 is mixed with water?
Q29. Air-cooled condensers should be located in areas that provide plenty of clear space around them for what reason?
Q30. On close-coupled systems, running refrigerant lines up to the overhead helps eliminate what problem?
Q31. To eliminate possible oxidation from occurring while conducting soldering or brazing operations, you should ensure what condition exists within the tube or pipe?
Q32. U-traps or oil separators should be installed on multiple compressor systems when the condensers are how many feet above the compressor?
Continue Reading